
Python Programming-5th Unit

1 | Page

Python Programming

Unit 5

Topics to be covered
Object Oriented Programming OOP in Python: Classes, 'self variable', Methods, Constructor

Method, Inheritance, Overriding Methods, Datahiding.

Error and Exceptions: Difference between an error and Exception, Handling Exception, try

except block, Raising Exceptions, User Defined Exceptions

Objective: Understanding Object Oriented Concepts and exception handling

Outcome: Students are able to apply Object Oriented Concepts and exception handling.

Introduction to Object Oriented Programming
Python has been an object-oriented language since it existed. Because of this, creating and using

classes and objects are very easy. The OOP is more value as the program size is growing. The

procedural programming may produce some side affect and have no data security. The main

advantage of the OOP is that, the data can be combined with functions that are acting on the data

into a single unit. This process is called “encapsulation”. The basic unit that provides this

encapsulation is the “class” keyword.

OOP Principles
The four major principles of object oriented programming they are:

Encapsulation

Data Abstraction

Polymorphism

Inheritance

Encapsulation – It is the process of wrapping or binding the data and member function into a

single unit.

Data Abstraction – Data Abstraction is a process of hiding the implementation details from the

user, only the functionality will be provided to the user. This can be achieved by making the data

as private or protected.

Polymorphism - The assignment of more than one behavior to a particular function. The

operation performed varies by the types of objects or arguments involved.

Inheritance - The process of acquiring the properties or members of one class to another class.

Python Programming-5th Unit

2 | Page

Class

It is a user-defined prototype for an object that defines a set of attributes that characterize any

object of the class. The attributes are data members (class variables and instance variables) and

methods, accessed via dot notation.

In Python, everything is an object or an instance of the some class. In general, the class

can be defined as follow:

It is a Prototype from which objects are created.

It is a Model from which objects are created.

It is a Blueprint from which objects are created.

It is a Template from which objects are created.

Defining the class
Defining the class in python is very easy. The class definition can appear anywhere in the

program, but usually they are written in the beginning. The definition contains two things: class

header and class body. The class header begins with “class” keyword followed by the

class_name, and colon (:) at the end. The body of the class contains one or more statements.

These statements are normally data members and member function. The class variables and

methods together called “Class Members”. The data members are also called as instance

variables.

#defining the class

class Employee: # class header

class variable

Data Member1

Data Member2

Member function1

Member function 2

Where class is the keyword, Employee is the class name. The class header contains class

keyword, class name and colon (:) operator. The class body contains class variables, data

members and member functions.

Class Body

Python Programming-5th Unit

3 | Page

Defining the __init__ method (constructor)
There is a special method “ init ” which is used to initialize the instance variables or

data members of the class. This is also called as “constructor”. It is defined as follows:

def init (self, n, s): # constructor, where n and s are parameters

self.name=n #initialization of instance variables- name and sal

self.sal=s

The “ init ” method has one argument “self” and every method has at least one

argument that “self”. This „self‟ argument is a reference to the current object on which the

method is being called. This “ init ” method is called with the help of class constructor.

Adding the Member Functions or Methods to class

We can add any number of functions or methods to the class as we like. The function that is

written inside the class is called “member function or method”. Writing the method is quite

similar to the ordinary function with just one difference. The methods must have one argument

named as “self”. This is the first argument that added to the beginning of parameters list. The

method or function definition is written inside the class as shown in the syntax:

#Defining class

class Employee: # class header

#declaring the class variable

count=0

#defining the constructor

def init (self,n,s):

self.name=n

self.sal=s

Employee.count+=1

#adding the method to the class

def dispemp(self):

print("The employee name is:",self.name,"Salary is:",self.sal)

self variable
The self argument refers to the current object.

Python takes care of passing the current object as argument to the method while calling.

Python Programming-5th Unit

4 | Page

Even if the method does not contain the argument, Python passes this “current object”

that called the method as argument, which in turn is assigned to the self variable in the

method definition.

Similarly a method defined to take one argument will actually take two arguments: self

and parameter.

#defining class and creating the object

class ABC:

def init (self,b):

self.balance=b

def disp(self): # method with self argument

print("The amount is:",self.balance)

ob=ABC(1000);

ob.disp() //method is called without argument, python passes „ob‟ as argument at the

background.

Output:

Creating the Object from the class
The procedure for creating the object is similar to the function call. The class name and the

arguments mentioned in the “ init ” method should be specified. The syntax is as follow:

#creating the object

emp1=Employee("Ramesh",23000)

Where, the “Employee” is class name. This is used as constructor name. The actual parameters

are passed to the formal parameters present in the init method that in turn assigns to the

instance variable. This statement will create a new instance (object) of class, named emp1. We

can access the members of objects using the object name as prefix along with dot (.) operator.

Creating the object or instance of the class is called “Instantiation”.

Accessing the members of the object
Once the object is created, it is very easy and straight forward to access the members of the

object. The object name, dot operator and member name is used. The syntax is as follow:

#accessing the member function

emp1.dispemp()

Putting all the things together
emptiest.py

#defining the class

class Employee:

'doc string'

#declare class variables

count=0

def init (self,n,s): #constructor

self.name=n

Python Programming-5th Unit

5 | Page

self.sal=s

Employee.count+=1

def dispemp(self):

print(" the name is:",self.name,"sal is :",self.sal)

#end of the class

#creating object

emp1=Employee("RAM",30000)

emp2=Employee("RAJU",40000)

#access the member function

emp1.dispemp()

emp2.dispemp()

print("The Number of employees are:",Employee.count)

Output:

Data Abstraction and Hiding through Classes
Data Encapsulation is also known as Data Hiding. It is the process of binding the data members

and member function together into a single unit. This encapsulation defines different access

levels for members of the class. These access levels are specified as follow:

Any data or member function with access level “public” can be accessed by any

functions belonging to any class. This is the lowest level of protection.

Any data or member function with access level “private” can be accessed by member

functions of the same class in which it is declared. This is the highest level of protection.

In Python, private variable are declared with the help of () double underscore prefixed

to the variable. For example, “ balance” is the private variable.

Class Variable and Instance Variable
A class can have variable defined in it. Basically, these variables are of two types: class variables

and instance (object) variable. The class variables are always associated with class and instance

variables are always associated with object.

The class variables are shared among all the objects. There exists a single copy of the

class variables.

Any change made to the class variable will be seen by all the objects.

The instance variables are not shared between objects.

A change made to the instance variable will not reflect in other objects.

Create a class name “BankAccount” and perform operations like deposit and withdraw from the

same account. Save this class in a module named Account.py and import it in the saving.py file.

(Use Instance variable)

account.py (module) testaccount.py

Python Programming-5th Unit

6 | Page

class BankAccount:

def init (self,bal):
self.balance=bal

def deposit(self,bal):

self.balance+=bal
def withdraw(self,amount):

if(self.balance>=amount):

self.balance-=amount

else:
print("Insufficient amount in your account")

import account #here account is the module -

contains bankaccount class

#create object from bankaccount class

savings=account.BankAccount(0)

#depositing amount
dep=float(input("Enter amount to deposit: "))

savings.deposit(dep)

#withdraw amount
w=float(input("Enter the amount to withdraw: "))

savings.withdraw(w)

print("The remaining balance in your account
is:",savings.balance)

Output:

The __del__() method (Garbage Collection)
The init () method initializes an object instance variables. Similarly we have, del ()

method which will do the opposite work. This method frees the memory of the object when ti is

no longer needed and the freed memory is returned back to the system. This process is known as

“Garbage Collection”. This method is called automatically when an object is going out of the

scope. We can use “del” statement for deleting the object as shown in the program.

#defining class and creating the object

class ABC:

def init (self,b):

self.balance=b

def disp(self): # emthod with self argument

print("The amount is:",self.balance)

def del (self):

print("This object is deleted from the memory")

ob=ABC(1000);

ob.disp()

#callinf the del () method

del ob

#if you try to call the method disp it raises error

ob.disp()

Output:

Inheritance
Inheritance is the one of the most and essential concept of the Object

Oriented Programming. It is the process by which one class acquires the

properties from one or more classes. Here the properties are the Data

members and member functions. The new classes are created from the

existing classes. The newly created class is called "Derived" class. The

Python Programming-5th Unit

7 | Page

existing class is called "Base" class. The Derived class also called with other names such as sub

class, child class and descendent. The existing class is also called with other names such as

super class, parent class and ancestor. The concept of inheritance therefore, frequently used to

implement is-a relationship. The relationship between base and derived class is called "Kind of

Relationship".

REUSABILITY

The main reason to go to the concept of the Inheritance is reusing the existing properties, which

is called reusability. The reusability permits us to get the properties from the previous classes.

We can also add the extra features to the existing class. This is possible by creating new class

from existing class. The new class will have its own features and features acquired from the base

class.

Note: The new class will have its own properties and properties acquired

from the base class.

Inheriting classes in Python

The Syntax to inherit the properties from one class to another will be as follow:

class Derived_Class (Base_Class):

#body of the Derived_class

We can even write the base class name along with name of the module instead of writing it

again.

Example Program to Implement the Inheritance (si.py)

#Single Inheritances Output

class A:
def add(self,x,y):

self.x=x
self.y=y

print("The addition is:",self.x+self.y)

class B(A): #Single Inheritance

def sub(self,x,y):
self.x=x

self.y=y

print("The subtraction is:",self.x-self.y)

#read data into a and b

a=int(input("Enter a value:"))
b=int(input("Enter b value:"))

#create object from derived object

ob=B()

ob.add(a,b)

ob.sub(a,b)

Python Programming-5th Unit

8 | Page

Polymorphism and Method Overriding
Polymorphism in its simple terms refers to have different forms. It is the key feature of OOP. It

enables program to assign different version of the function based on the context. In Python,

method overriding is a way to implement Polymorphism.

If the base class and derived classes are having the same method, when we create object

from the derived class, the derived class version of the method is executed always. This is known

as method overriding.

Example program for method overriding

Method overriding Output

#method overriding -super() method
class BC:

def disp(self):
print("Base class Method")

class DC(BC):

def disp(self):
print("Derived class method")

ob=DC()
ob.disp()

Derived class method

TYPES OF INHERITANCES
Python has various types of Inheritances. The Process of Inheritance can be either Simple or

complex. This depends on the following points:

The Number of base classes used in the inheritance.

Nested derivation

Based on the above points the inheritances are classified in to the six different types.

Single Inheritance

Multilevel Inheritance

Multiple Inheritance

Hierarchical Inheritance

Hybrid Inheritance

Multi-path Inheritance

Single Inheritance

When only one class is derived from a single base class, such derivation is

called single inheritance. It is the simplest form of Inheritance. The New

class is termed as "Derived" class and the existing class is called

"Base" class. The newly created class contains the entire characteristics

from its base class. The Example program is already is given above.

Multilevel Inheritance

Python Programming-5th Unit

9 | Page

The process of deriving a new class from a derived class is known as "Multilevel Inheritance".

The intermediate derived class is also known as middle base class. C is derived from B. The

class B is derived from A. Here B is called Intermediate base class. The series of classes A, B

and C is called "Inheritance Pathway".

Example Program on Multi-Level Inheritance

Multi-Level Inheritance Output

class A:
def add(self,x,y):

self.x=x

self.y=y

print("The addition is:",self.x+self.y)
class B(A): #Single Inheritance

def sub(self,x,y):

self.x=x

self.y=y
print("The subtraction is:",self.x-self.y)

class C(B):

def mul(self,x,y):
self.x=x

self.y=y

print("The product is:",self.x*self.y)

#read data into a and b
a=int(input("Enter a value:"))

b=int(input("Enter b value:"))

#create object from derived object
ob=C()

ob.add(a,b)

ob.sub(a,b)
ob.mul(a,b)

Enter a value:23
Enter b value:12

The addition is: 35

The subtraction is: 11

The product is: 276

Multiple Inheritances

When two or more base classes are used in the derivation of

new class, it is called "Multiple Inheritance". The derived

class C has all the properties of both class A and class B.

Example program on Multiple –Inheritance:

Multiple Inheritance Output

class A:
def add(self,x,y):

self.x=x

self.y=y
print("The addition

is:",self.x+self.y)

class B: #Single Inheritance

def sub(self,x,y):

self.x=x

self.y=y

Enter a value:23
Enter b value:12

The addition is: 35

The subtraction is: 11
The product is: 276

Python Programming-5th Unit

10 | Page

Hierarchical Inheritance

The Process of splitting the base class into several sub

classes is called, "Hierarchical Inheritance". All the

sub classes have the same properties of those in base

class. Here The classes B and C acquire properties from

the class A.

Hybrid Inheritance

A Combination of two or more types of inheritances is

called "Hybrid Inheritance". Sometimes it is essential to

derive a class using more types of inheritance. Here There

are 4 classes A, B, C and D. The class B acquires the

properties from A, hence there exist a single inheritance.

Class D acquires properties from B (which is a derived

class) and C, hence uses multiple inheritance. Here two

different types of Inheritances used are: Single and

Multiple.

Example Program on Hybrid-Inheritance

Hybrid-Inheritance Output

#types of Inheritances
class A:

def add(self,x,y):

self.x=x
self.y=y

print("The addition is:",self.x+self.y)

class B(A): #Single Inheritance

def sub(self,x,y):

self.x=x

Enter a value:12
Enter b value:3

The addition is: 15

The subtraction is: 9
The product is: 36

The division is: 4.0

#read data into a and b

a=int(input("Enter a value:"))

b=int(input("Enter b value:"))
#create object from derived

object

ob=C()
ob.add(a,b)

ob.sub(a,b)
ob.mul(a,b)

product

subtraction print("The

is:",self.x-self.y)

#Multiple Inheritance
class C(A,B):

def mul(self,x,y):

self.x=x
self.y=y

print("The

is:",self.x*self.y)

Python Programming-5th Unit

11 | Page

self.y=y

print("The subtraction is:",self.x-self.y)

class C:
def mul(self,x,y):

self.x=x

self.y=y

print("The product is:",self.x*self.y)
#Hybrid Inheritance

class D(B,C):
def div(self,x,y):

self.x=x

self.y=y

print("The division is:",self.x/self.y)
#read data into a and b

a=int(input("Enter a value:"))

b=int(input("Enter b value:"))

#create object from derived object
ob=D()

ob.add(a,b)
ob.sub(a,b)

ob.mul(a,b)
ob.div(a,b)

Multi-Path Inheritance

Deriving a class from two derived classes that are in turn

derived from the same base class is called “Multi-Path

Inheritance”. In this context the derived class has two

immediate base classes, which are derived from one base class,

there by forming the grandparent, parent and child

relationship. The derived class inherits the features from base

class (grandparent) via two separate paths. Therefore, the base

class is also known as the indirect base class.

Problem in Multi-Path Inheritance (Diamond Problem)

The derived class has the members of the base class twice, via

parent1 and parent 2. This results in ambiguity because a duplicate set of members is created.

This is avoided in python using the dynamic algorithm (C3 and MRO) linearizes the search order

in such as way that left-to-right ordering is specified to avoid duplication.

Composition or Container or Complex objects
The complex objects are objects that are created from smaller or simple objects. For

example, a car is built from metal frame, an engine, some tyres, a steering and several other

parts. The process of building complex objects from simpler objects is known as Composition or

Containership. The relationship is also called “has-a” or “part-of” relationship.

Python Programming-5th Unit

12 | Page

Example Program on Composition:

Composition Output

class A1:
def add(self,x,y):

self.x=x

self.y=y

print("The addition is:",self.x+self.y)
#composition

class B1:

def sub(self,x,y):
self.a=A1() #object of class A1()

self.x=x

self.y=y
print("The subtraction is:",self.x-self.y)

self.a.add(x,y) #calling the method of another

class

ob=B1()
ob.sub(12,3)

The subtraction is: 9

The addition is: 15

The Difference between Inheritance and composition

Inheritance Composition

A class Inherits properties from another class A class contains objects of different classes as data
members

The derived class may override base class

functions

The container class cannot override the base class

functions

This represents a “is-a” relationship This represents “has-a” relationship

Abstract classes and Inheritances
In python, it is possible to create a class which cannot be instantiated. We can create a class from

which objects are not created. This class is used as interface or template only. The derived can

override the features of the base class. In python, we use “NotImplementedError” to restrict the

instantiation. Any class that has the NotImplementedError inside the method definitions cannot

be instantiated.

Example Program on Abstract class:

#abstract class Output

class A:

def disp(self):

#abstract class method
raise NotImplementedError()

class B(A):
def disp(self):

The method of class B

The method of class C

The derived class may add data or functionality The container class cannot add anything to the

to the base class contained class

Python Programming-5th Unit

13 | Page

print("The method of class B")

class C(A):
def disp(self):

print("The method of class C")

#create object
#ob=A() # we cannot create object

#ob.disp() #we cannot call the method

ob1=B()

ob1.disp()
ob2=C()
ob2.disp()

Error and Exceptions: Difference between an error and Exception
There are (at least) two distinguishable kinds of errors: syntax errors and exceptions.

Syntax Error: These errors are occur when we violate the rules of Python and these are most

common kind of errors that we get while we learn any new programming language.

Examples: (1) if x>=10

SyntaxError: invalid syntax

Here at the end of, if statement (:) colon should be written, error will be generated otherwise.

Violating Indentation, missing (:) colon at the end of loop statements etc.

Exception Error: Even if a statement is syntactically correct, it may still cause an error when

executed. Such errors that occur at run-time are known as “Exceptions”. The logical error may

occur due to wrong algorithm or logic while solving a particular problem. These logical errors

may lead to Exceptions. Examples of Exceptions are as follow:

>>>y+2

NameError: name 'y' is not defined

>>>2+'x'

TypeError: unsupported operand type(s) for +: 'int' and 'str'

>>>10*(1/0)

ZeroDivisionError: division by zero

>>>l=[1,2,3]

>>> l[3]

IndexError: list index out of range

>>>d={1:'x',2:'y',3:'z'}

>>> d[4]

KeyError: 4

Problem with Exception:

The normal execution of the program will be abruptly terminated because of the exception. In

general, just because of a single run-time error, it is not reasonable to terminate the program

abruptly, even if program contains some legal lines. To solve this problem the exceptions must

be handled. In python these exceptions are handled using the try and except blocks.

Handling Exceptions

Python Programming-5th Unit

14 | Page

The statements that can raise the exception are placed inside the try block, and the code that

handles is placed inside except block. Here try and except are keywords. The syntax for try-

except can be as given bellow:

try:

Statements

except ExceptionName:

Statements

The try statement works as follows.

First, the try block (the statement(s) between the try and except keywords) is executed.

If no exception occurs, the except block is skipped and execution of the try statement is finished.

If an exception occurs during execution of the try block, the rest of the block is skipped. Then if

its type matches the exception named after the except keyword, the except block is executed, and

then execution continues after the try statement.

If an exception occurs which does not match the exception named in the except block, it is

passed on to outer try statements; if no handler is found, it is an unhandled exception and

execution stops with a message.

Example Program

Exception1.py Exception1.py

#program without exception handler

x=int(input("Enter x value"))

y=int(input("Enter y value"))
print("The sum is:",x+y)

print("The suntraction is:",x-y)

print("The quotient is:",x/y)
print("The product is:",x*y)

print("The remainder is:",x%y)

print("The power of x^y si:",x**y)

x=int(input("Enter x value"))

y=int(input("Enter y value"))

print("The sum is:",x+y)
print("The suntraction is:",x-y)

try:

print("The quotient is:",x/y)
print("The remainder is:",x%y)

except ZeroDivisionError:
print("You should not divide number with zero")

#legal code

print("The product is:",x*y)
print("The power of x^y si:",x**y)

Output Output

Enter x value4

Enter y value0

The sum is: 4

The suntraction is: 4

Traceback (most recent call last):
File "E:/python/exception1.py", line 5, in

<module>

print("The quotient is:",x/y)

ZeroDivisionError: division by zero

Enter x value4

Enter y value0

The sum is: 4

The suntraction is: 4
You should not divide number with zero
The product is: 0

The power of x^y si: 1

Multiple except blocks

Python allows you to have multiple except blocks for single try block. The block that matches

with exception will be executed. A try block can be associated with one or more except block.

However, only one block will be executed at a time.

Python Programming-5th Unit

15 | Page

The Syntax for multiple except blocks for single try will be as follow:

try:

Operations are done in this block

except Exception1:

If exception is matched, this block will be executed.

except Exception2:

If exception is matched, this block will be executed.

else:

If there is no exception matched, this block will be executed.

Example program to Handle multiple exceptions

Mulexcept.py Output

#read the data Enter value of x:2

try: Enter value of y:0

x=int(input("Enter value of x:")) The value of y should not be zero
y=int(input("Enter value of y:")) End of the program

print(x**2/y) >>>

except (ValueError): == RESTART: E:/python/multiexcep.py =======
print("Check before you enter value:") Enter value of x:

except ZeroDivisionError: Check before you enter value:

print("The value of y should not be zero") End of the program
except (KeyboardInterrupt): >>>

print("Please eneter number:")

print("End of the program")

Multiple Exceptions in a single except block

It is possible to list number of exceptions in the except block. When any one of the exception is

raised, then the except block is executed as shown in the program.

Multexcept1.py output

#read the data

try:
x=int(input("Enter value of x:"))

y=int(input("Enter value of y:"))

print(x**2/y)

except (ValueError,ZeroDivisionError,KeyboardInterrupt):
print("Check before you enter values foer x and y. Y

should not be zero")
print("End of the program")

Enter value of x:3

Enter value of y:2

4.5
End of the program

>>>
======= RESTART:

E:/python/multiexcep1.py
=======
Enter value of x:4

Enter value of y:
Check before you enter values for x and
y. Y should not be zero

Python Programming-5th Unit

16 | Page

Except block without exception

 We can even specify except block without mentioning any exception.

 In large software programs, many a times, it is difficult to anticipate (guessing) all

types of possible exceptional conditions.

 Therefore a programmer may not be able to write a different handler for every

exception.

 In such a situation, a better idea is to write a handler that would catch all types of

exceptions.

 This must me the last one that can serve as wildcard.

 Syntax will be as follow:

Example Program

Testexcept.py Output

#read the data Enter value of x:4

try: Enter value of y:

x=int(input("Enter value of x:")) Unexpected errorTerminating the

y=int(input("Enter value of y:")) program:

print(x**2/y) End of the program

except (TypeError):

print("Choose the correct type of value:")

except (ZeroDivisionError):

print("The value of y should not be zero")

except:

print("Unexpected errorTerminating the

program:")

print("End of the program")

The else clause

The try- except block can also have an else clause, which, when present must follow all except

blocks. The statements in the else block only executed, if the try clause does not raise an

exception.

End of the program

try:

statements

except Exception1:

statements

except Exception2:

statement

except:

execute this block, if an exception match is found

Python Programming-5th Unit

17 | Page

Testexcept.py Output

try: Enter value of x:4
x=int(input("Enter value of x:")) Enter value of y:2
y=int(input("Enter value of y:")) 8.0

print(x**2/y) Program execution is successful....

except (TypeError): End of the program
print("Choose the correct type of value:")

except (ZeroDivisionError):

print("The value of y should not be zero")

except (ValueError):

print("Unexpected errorTerminating the

program:")

else:

print("Program execution is successful ... ")

print("End of the program")

Raising the exception

We can also deliberately raise the exception using the raise keyword. The syntax is as follow:

Example Program:

Testexcept.py Output

try: Enter value of x:4
x=int(input("Enter value of x:")) Enter value of y:0

y=int(input("Enter value of y:")) The value of y should not be zero

print(x**2/y) End of the program

raise ZeroDivisionError

except:

print("The value of y should not be zero")

Handling exceptions in Invoked Functions
We can also handle exceptions inside the functions using the try-except blocks.

Funexcep.py Output

def division(num,deno):

try:

r=num/deno
print("The quotient is:",r)

except ZeroDivisionError:

print("You cannot divide number by zero")

#function call

x=int(input("Enter x value:"))

y=int(input("Enter y value:"))

division(x,y)

Enter x value:4

Enter y value:0

You cannot divide number by zero
>>>

======= RESTART: E:/python/funexcep.py
========
Enter x value:4

Enter y value:2

The quotient is: 2.0
>>>

raise [exception-name]

Python Programming-5th Unit

18 | Page

Built-in Exceptions:

Exception Description
Exception Base class for all exceptions

StopIteration Generated when next() method does not point
to any object

SystemExit Raised by sys.exit() function

StandardError Base class for all built-in exceptions(except
StopIteration and SystemExit)

ArithmeticError Base class for mathematical errors

OverflowError Raised when maximum limit of the number is
exceeded

FloatingPointError Raised when floating point operations could
not performed

ZeroDivisionError Raised when number is divided by zero

AssertionError Raised when assert condition fails

AttributeError Raised when attribute reference is failed

EOFError Raised when end of the file is reached

ImportError Raised when import statement is failed

KeyboardInterrupt Raised when user interrupts the keyboard (pressing
ctrl+c)

IndexError Raised when index is not found

KeyError Raised when key is not found

NameError Raised when an identifier is not defined

SyntaxError Raised when rules of language are violated

ValueError Raised when arguments are invalid type

TypeError Raised when two or more data types are mixed

User Defined Exceptions

Python also allows you to create your own exceptions by deriving classes from the standard

built-in exceptions.

Here is an example related to Exception. Here, a class is created that is subclassed from

Exception. This is useful when you need to display more specific information when an exception

is caught.

In the try block, the user-defined exception is raised and caught in the except block. The variable

„e‟ is used to create an instance of the class Networkerror.

class NetworkError(Exception):

def init (self, arg):

self.name = arg

Python Programming-5th Unit

19 | Page

Output:

The network error is: Network Connection Failed

try:

raise NetworkError('Network Connection Failed')

except NetworkError as e:

print("The network error is:", e.name)

	Python Programming
	Topics to be covered
	Introduction to Object Oriented Programming
	OOP Principles
	Class
	Defining the class
	Defining the __init__ method (constructor)
	Adding the Member Functions or Methods to class
	self variable
	Creating the Object from the class
	Accessing the members of the object
	Putting all the things together
	Data Abstraction and Hiding through Classes
	Class Variable and Instance Variable
	The __del__() method (Garbage Collection)
	Inheritance
	Inheriting classes in Python
	Polymorphism and Method Overriding
	TYPES OF INHERITANCES
	Composition or Container or Complex objects
	The Difference between Inheritance and composition
	Abstract classes and Inheritances
	Error and Exceptions: Difference between an error and Exception
	Multiple Exceptions in a single except block
	Except block without exception
	Example Program

	Raising the exception
	Handling exceptions in Invoked Functions
	Built-in Exceptions:
	Output:

